				Redacte	d					
Ex	Exam 3 Special Code 222222 Name:									
Pe	trovich, Fall 2009				print last	print first				
				lumber: R		(000#####)				
1.	The pressure of the					atmospheres of				
	the Argon gas in th	e buib if the neigr	nt difference	is 60 mm	Hg? open to the atmosphere					
		750	16			←Ar				
	(A) 1.07 atm	130	100							
	B) 810 atm	750-	0		h					
	C) 0.91 atm				•					
	D) 690 atm									
2.	Early car air bags g g NaN ₃ /mol), accor required to fill a 20.	ding to the reaction	on below. H	ow many	grams of sodiu					
		2NaN ₃	\rightarrow 2Na (s)	$+3N_{2(g)}$						
		sodium a	izide		\$174/7					
		PV=nRT (1)(20)= n(11-	a 101					
		(1)(50)= N(10831) (500))	1= (60)					
	A) 53.1 g NaN ₃ B	3) 4.17 g NaN ₃	C) 35.4 g l	NaN ₃ D)	266 g NaN ₃	E) 6.25 g NaN ₃				
3.	What is the approxi	mate energy in k		ecules at	255° C?					
	A) 43.4 kJ/mol B	3) 2120 kJ/mol	C) 2.12 kJ	/mol D)	20.9 kJ/mol	E) 4.39 kJ/mol				
4.	4.53 grams of nitrog of 0.563 atmospher DECREASE the PF	res and a tempera		C. Which	of the following					
	1) increasing the many decreasing the	volume of the co	ntainer.	ner.	1=nRT					
	JIII) increasing the		itainer.							
	IV) decreasing the V) increasing the t									
	A) I, III, & V only		only C) II & IV	only D)	III & IV only				
5.	Which species belo									
		п п п	и с	Г	и и и	и и				

Exam 3

- **6.** Four materials and their boiling points are shown below. Choose the substance in which the interaction energy has the greatest excess over the thermal energy at room temperature and 1 atmosphere of pressure.
 - A) C₈H₁₈ (125 °C)
- B) CH₃COOH (118 °C)
- C) CH₃COH (21 °C)
- D) CH₄ (-161 °C)
- **7.** Three molecules are shown below. Which one has the HIGHEST boiling point and what is the strongest intermolecular force responsible for the difference?

H2S

 H_2O

П256

- A) H₂Se due to dispersion forces.
- C) H₂O due to dispersion forces.
- E) H₂S due to dipolar forces.

- B) H₂O due to H-bonding.
 - D) H₂Se due to dipolar forces.
- come are shown below. Change the combinations below in
- **8.** Three molecules with labeled atoms are shown below. Choose the combinations below in which H-bonding can occur.

- A) Nz--Hb
- **B)** O_x--H_c
- C) Oy--Ha
- D) H_b--H_e

- 9. Select the statement that is FALSE.
 - A) Arrow H represents sublimation.
 - B) Point d is a melting point.
 - Arrow K represents freezing.
 - D) Arrow L represents condensation.
 - E) Region Arepresents the solid state.

- **10.** The pressure of water vapor in the atmosphere is found to be 12.0 torr when it is 25°C. The vapor pressure of water is 23.8 torr when it is 25°C. What is the relative humidity?
 - A) 48.0 %
- B) 198 %
- C) 50.4 %
- D) 95.2 %
- 11. Choose all the NON-POLAR compounds from the choices below.

- A) I only
- B) I, II & III
- C) IV only
- D) I & III
- E) II & IV

12	. The unit cell of a magnetic potassium-manganese-fluoride ionic compound is shown
	below. The potassium occupies the center of the unit cell. The manganese occupies the
	corners of the unit cell. The fluorine occupies the edge of the unit cell. Choose the
	correct formula for the compound below.

13.	The band	diagrams	below	correspond	to a	conductor,	semico	onductor	and	insulator.
	Which one	ie the inci	lator?							

- A) i=ionic, ii=network covalent
- B) i=network covalent, ii=molecular
- c) i=metallic, ii=molecular

DIMOI

D)) i=ionic, ii=molecular

15. Chose the cubic cell below in which each atom has a coordination number of 8.

16. Choose the material shown in the picture.

- A) diamond
- B) bucky ball
- C) graphite
- D) sodium chloride
- 17. Calculate ΔE for a system undergoing an <u>exothermic</u> process in which 3.6 kJ of heat flows and where 1.4 kJ of work is done <u>by</u> the system.

B) -5.0 kJ

C) +2.2 kJ

D) -1.2 kJ

18. What is the approximate value of ΔS for the reaction below?

$$CH_{4 (g)} + 2 O_{2 (g)} \rightarrow CO_{2 (g)} + 2 H_{2}O_{(l)}$$

A) $\Delta S < 0$

B) $\Delta S > 0$

C) AS ~ 0

D) cannot be predicted

19. The combustion reaction of tetranitrocubane is shown below.

 $C_8H_4N_4O_8$ (s) + $5O_2$ (g) \rightarrow 8 CO_2 (g) + $2H_2O$ (l) + $2N_2$ (g) $\Delta H^0 = -3700$ kJ/mol

What is the value of ΔH^0 for the reaction shown?

 $16 \text{ CO}_{2 \text{ (g)}} + 4\text{H}_2\text{O}_{\text{ (l)}} + 4 \text{ N}_{2 \text{ (g)}} \rightarrow 2\text{C}_8\text{H}_4\text{N}_4\text{O}_8 \text{ (s)} + 10 \text{ O}_2 \text{ (g)}$

A) +3700 kJ

B) -7,400 kJ (C) +7,400 kJ (D) +59,200 kJ (E) -59,200 kJ

20. The reaction for the oxidation of formaldehyde to formic acid is shown below. Using bond enthalpies, determine the value of ΔH for the reaction.

С-Н	413	N-H	391	О-Н	463	Н-Н	436		
	485			O-F		H-F	565	F-F	155
C-C1	328					H-C1	431	C1-C1	242
C-Br	276	N-Br	243	O-Br	235	H-Br	366	Br-Br	193
C-I	234			O-I	234	H-I	299	I-I	151

C-C	347	N-N	163	C-N	293	C-O	358	0-0	146
C=C	612	N=N	418	C=N	615	C=O	799	O=O	495
C≡C	820	N≡N	941	C≡N	891	C≡O	1072		

A) +753 kJ/mol **B)** +59 kJ/mol

C) -354 kJ/mol

D) -404 kJ/mol

E) -753 kJ/mol

- 21. A spontaneous reaction is taking place in a flask. You notice the formation of gas bubbles intensifies as the reaction progresses. Based upon the observations, choose the correct analysis for each term in the Gibbs Free Energy equation.
 - A) $\Delta G < 0$, $\Delta S < 0$, ΔH cannot be determined from information given.

B) $\Delta G < 0$, $\Delta S > 0$, $\Delta H < 0$.

1 G = 1 A - 1 A = 1 > 0

C) $\Delta G < 0$, $\Delta S > 0$, ΔH cannot be determined from information given.

D) $\Delta G > 0$, $\Delta S < 0$, $\Delta H > 0$.

22. Choose the correct statement that describes the reaction below.

$$PCl_{5(s)} \rightarrow PCl_{3(l)} + Cl_{2(q)}$$
 $\Delta H =$

 $\Delta H = +113.5 \text{ kJ/mol}$

A) The reaction is extensive at low temperature.

e Xdensive >0

B) The reaction is extensive at high temperature.

C) The reaction is extensive at any temperature.

D) The reaction is not extensive at any temperature.

23. The Mond process, shown below, is used to purify nickel. What is the Keq expression for this reaction?

$$Ni_{(s)}$$
 + 4 CO $_{(g)}$ \Rightarrow $Ni(CO)_{4(g)}$

- **A)** $K_{eq} = [Ni(CO)_4] / [CO]^4$
- (B) $K_{eq} = [Ni(CO)_4] / ([CO]^4 \times [Ni])$
- C) $K_{eq} = [Ni(CO)_4] / (4 \times [CO])$
- **D)** $K_{eq} = [CO]^4 \times [Ni] / [Ni(CO)_4]$

Use the reaction coordinate diagram below to answer the next two questions regarding the

reaction: $X-Y + Z \Rightarrow X + Y-Z$.

- **24**. Choose the value of ΔG and E_{act} (forward).
- **A)** $\Delta G = +2 \text{ kJ}$, $E_{act} = +10 \text{ kJ}$ **B)** $\Delta G = +2 \text{ kJ}$, $E_{act} = +8 \text{ kJ}$ **C)** $\Delta G = -6 \text{ kJ}$, $E_{act} = +10 \text{ kJ}$

- **(D)** $\Delta G = -6 \text{ kJ}, E_{act} = +2 \text{ kJ}$ **E)** $\Delta G = -6 \text{ kJ}, E_{act} = -2 \text{ kJ}$
- 25. Select the FALSE statement for the diagram above.
 - A) The forward reaction is preferred because k_{forward} > k_{reverse}.
 - B) The diagram represents a reaction for which K > 1.
 - C) Bond X-Y is stronger than bond Y-Z.
 - D) Heating the reaction will result in the formation of more X-Y.

Use the reaction for the formation of stalagmites and stalactites for the next two questions. The reaction is at equilibrium.

$$Ca^{2+}_{(aq)} + 2HCO_3^{1-}_{(aq)} = CaCO_3_{(s)} + CO_2_{(g)} + H_2O_{(l)} \Delta H > 0$$

- 26. What is the effect on Ca²⁺ concentration when the reaction is heated?
 - (A) increases
- B) decreases
- C) stays the same
- 27. What is the effect on Ca²⁺ concentration when CO_{2 (q)} is added?
 - A) increases
- B) decreases
 - C) stays the same
- 28. Choose the sample with the LEAST mass.
- **A)** 6×10^{23} S atoms **B)** 3×10^{23} Na atoms **C)** 0.75 mol Cu atoms **D)** 1.5 mol N atoms

32.07

47,66

I pledge that I have neither given nor received aid on this exam.

Answer Sheet ex3-2.dat 2009/10/29

Name	Campus Number	Spec Code	Misc Data	Total Score 1	Score 2	by Part 3 4	5 Pct
Redacted	========	=======	./	19 19			. 67.9
1-A 6-A 11-E 16-A 21-C 26-A (B)	2-A (C) 7-B 12-D 17-A (B) 22-A (B) 27-B (A)	3-E 8-A 13-B 18-C 23-B 28-C		4-D 9-D 14-D 19-C 24-D		5-D 10-C 15-C 20-D 25-C	(A)